
Families of isospectral matrix Hamiltonians by deformation of the Clifford algebra on a phase

space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 025303

(http://iopscience.iop.org/1751-8121/43/2/025303)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/2
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 025303 (15pp) doi:10.1088/1751-8113/43/2/025303

Families of isospectral matrix Hamiltonians by
deformation of the Clifford algebra on a phase space
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Abstract
By using a recently developed method, we report five different families of
isospectral 2×2 matrix Hamiltonians defined on a four-dimensional (4D) phase
space. The employed method is based on a realization of the supersymmetry
idea on the phase space whose complexified Clifford algebra structure is
deformed with the Moyal star-product. Each reported family comprises
many physically relevant special models. 2D Pauli Hamiltonians, systems
involving spin–orbit interactions such as Aharonov–Casher-type systems,
a supermembrane toy model and models describing motion in noncentral
electromagnetic fields as well as Rashba- and Dresselhaus-type systems from
semiconductor physics are obtained, together with their super-partners, as
special cases. A large family of isospectral systems characterized by the
whole set of analytic functions is also presented.

PACS numbers: 45.20.Jj, 11.30.Pb, 03.65.Fd

1. Introduction

The supersymmetry (SUSY) idea, originally introduced in the relativistic field theory to
study the models in which boson and fermion become indistinguishable, has also provided
powerful methods in quantum mechanics (QM) to identify as well as to construct new
isospectral pairs of systems [1–3]. It is the usual Schrödinger formulation of QM where
the overwhelming majority of applications using the supersymmetric methods have taken
place. Deformation quantization has become the third autonomous and logically complete
formulation of QM beyond the conventional ones based on the Schrödinger formulation and
path-integral formulation. However, the first study illustrating the utility of Moyal ∗-product
in realizing supersymmetric techniques on a two-dimensional (2D) classical phase space has
appeared only a decade ago [4]. More recent studies [5–7] combining the ∗-product and
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Clifford product make it possible to include the fermionic degrees of freedom in the context
of deformation quantization.

The main goal of deformation quantization, which is also known as the phase-space
formulation of QM and also as Moyal quantization [8, 9], is to carry out all quantum
calculations in the classical phase space of Hamiltonian mechanics (for an extensive
chronological list of references we refer to [9]). In this quantization scheme all quantum
effects are encoded in the associative but non-commutative ∗-product with respect to which
all real-valued phase-space functions become quantum observables. A remarkable property
of this composition rule, not shared by the usual operator product, is that it enables one to
do all calculations to any desired order of the Planck constant h̄. This also makes it possible
to easily identify the classical limit of any evolution computed by means of ∗-product. In
[7], a realization of the SUSY methods on a 4D phase space was achieved by deforming the
complexified Clifford algebra C4(C) of the space with the Moyal ∗-product in composing the
components of Clifford forms. The resulting associative product, denoted by ∗MC, is called
the Moyal–Clifford (MC) product. This becomes the ∗-product of matrix-valued functions
when a matrix representation of the algebra is used. The method developed in [7] by means of
MC-algebra extends the applicability of deformation quantization to almost all area of QM.

Our main aim in the present study is to report five different families of isospectral pair of
2 × 2 matrix Hamiltonians defined on a 4D phase space. These are constructed by the method
of [7] in which the phase space is endowed with the fermionic degrees of freedom. Each
reported family contains some arbitrary, or partially constrained, phase-space functions which
enable the family to be large enough to comprise many special pairs. By this method, many
model Hamiltonians which are the main subject of active researches in different branches of
physics, ranging from supermembrane theory to the semiconductor physics, can be identified
together with their super-partners as special cases. The basic points of this method are outlined
below where our main notation and conventions are also fixed. The crucial role of the Clifford
algebra [10] in these constructions and the general structure of underlying SUSY algebra are
given in appendix A.

The main goal of [7] was to construct two isospectral matrix Hamiltonians

Hj = H∗1 + HjF , j = 1, 2, (1)

having a common bosonic part H∗1 with

H∗ = 1

2

2∑
j=1

(Pj ∗ Pj + Wj ∗ Wj),

but different fermionic parts HjF given by

H1F = i

2
B+σ3,

H2F = i

2
B−σ3 − i[W2, P1]Mσ1 − i[W1,W2]Mσ2,

B± = [W1, P1]M ± [W2, P2]M.

(2)

Here Wj and Pj are real-valued functions of the canonical coordinates (q, p), σk’s are the usual
Pauli matrices, 1 stands for the unit 2 × 2 matrix and [W,P ]M = W ∗ P − P ∗ W denotes the
Moyal bracket corresponding to the ∗-product:

∗ = exp

⎡
⎣1

2
ih̄

2∑
j=1

( ←
∂ qj

→
∂ pj

− ←
∂ pj

→
∂ qj

)⎤⎦ ,

2
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where an arrow over ∂x(=∂/∂x) indicates the direction for its action. The isospectral property
of H1 and H2 is evident from the following double intertwining relations:

L2 ∗MC H1 = H2 ∗MC L2, L1 ∗MC H2 = H1 ∗MC L1, (3)

where Lj’s denote the matrix-valued intertwining functions

L1 = 2i

(
0 0
C1 −C2

)
, L2 = 2i

(
C2 0
C1 0

)
, (4)

with
√

2Cj = Wj + iPj . As is shown in appendix A (for more details see [7]) relations (3)
hold if and only if C1 and C2 are Moyal commutating. This is equivalent to the following two
conditions:

[W1,W2]M = [P1, P2]M, [W1, P2]M = [W2, P1]M. (5)

A direct check of relations (3) and (5) may seem a bit lengthly; however, we should emphasize
the surprising role of the Clifford algebra in this regard and recommend the reader to have a
look at the appendix before checking the above equations.

Our classification of isospectral families is entirely based on physically relevant particular
solutions of the algebraic conditions (5). In fact, they constitute two (countably) infinite sets of
partial differential equations each arising from the equality of the coefficients of equal powers
of h̄ in both sides of each condition. Evidently, their general solutions seem to be impossible.
Nevertheless, as will be shown below, even their particular solutions comprise physically of
interest many isospectral pair of systems from different branches of physics. In this regard,
physical relevance considerably eases the investigation.

As the first two families, considered together in the next section, we present the cases in
which the above conditions are satisfied from the outset by appropriate choices of the involved
functions. We recover two 2D Pauli Hamiltonians which are supersymmetric partners and
have SUSY structures by themselves in the first family. In the second family one of the
partners is supersymmetric by itself. In this family a realization of the spin–orbit coupling on
the phase space which allows us to identify Aharonov–Casher (AC)-type systems as special
cases is presented. As is shown in section 3, some variants of a supermembrane toy model and
some Hamiltonians describing motions in noncentral electromagnetic fields can be recognized
as special cases of the third family. This is realized when there is only one condition arising
from (5). In the fourth family of section 4, conditions (5) go over to the well-known Cauchy–
Riemann conditions. A salient feature of this family is that to each analytic function an
isospectral pair of Hamiltonians is associated in such a way that one of them is purely bosonic
and the ferminonic part of the other indicates a Zeeman-type interaction with a purely gradient
magnetic field. The fifth family of section 5 consists of isospectral pairs containing a 2D
Rashba- or Dresselhaus-type system both of which are well known in the semiconductor
spintronics and spin Hall effect. Concluding remarks are given in section 6.

2. The first two families of Hamiltonians

There are two different ways of getting rid of conditions (5) by suitable choices of the phase-
space functions. As presented below, each of such a choice leads to a different family of
Hamiltonians.

3
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2.1. 2D Pauli Hamiltonians

The simplest way of fulfilling conditions (5) from the beginning is to choose C1 = 0, that is,
P1 = 0 = W1. Then for

W2 = 1√
M

(
p1 − e

c
A1

)
, P2 = 1√

M

(
p2 − e

c
A2

)
(6)

such that Aj’s depend only on qj’s we obtain

[W2, P2]M = i
eh̄

Mc
B(q). (7)

Considering Aj’s as the components of a vector potential, B(q) = ∂q1A2 − ∂q2A1 represents
the corresponding inhomogeneous magnetic field perpendicular to the q1q2-plane. Then in
terms of

H∗ = 1

2M

(
p − e

c
A

)2
, (8)

and γ = eh̄/2Mc we have

H1 = H∗1 − γB(q)σ3, H2 = H∗1 + γB(q)σ3. (9)

These are 2D Pauli Hamiltonians which differ from each other by the sign in front of the
Zeeman term −μ · B = −γBσ3. The Hamiltonians are related not by a charge conjugation
e → −e but by the reflection B → −B.

It is well known that both H1 and H2 are supersymmetric in the usual formulation of QM
[1–3]. Here we have established this fact in the phase-space formulation and have proved that
they are supersymmetric partners of each other. In this case the intertwining functions and
factorized forms of Hj are as follows:

L1 = −2iC2

(
0 0
0 1

)
, L2 = 2iC2

(
1 0
0 0

)
,

H1 =
(

C̄2 ∗ C2 0
0 C2 ∗ C̄2

)
= {

Q1,Q
†
1

}
MC, (10)

H2 =
(

C2 ∗ C̄2 0
0 C̄2 ∗ C2

)
= {

Q2,Q
†
2

}
MC.

Here the complex supercharges are defined by

Q1 = 2C̄2σ+, Q2 = 2C2σ+, (11)

where 2σ± = σ1 ± iσ2.

2.2. The second family of Hamiltonians

Another simple way for the fulfillment of conditions (5) is to choose C2 = kC1, where k is
any nonzero complex number. For k = 0, that is, for W2 = 0 = P2 we have the trivial case in
which both H1 and H2 are equal. In fact, for this equality it is sufficient to take one of W 2 and
P2 to be zero. Two illustrative examples can be given for nonzero k. In the first case we take
k to be a nonzero real constant such that W2 = kW1 and P2 = kP1. Hence,

H∗ = 1 + k2

2
(P1 ∗ P1 + W1 ∗ W1),

H1 = H∗1 + i
1 + k2

2
[W1, P1]Mσ3, (12)

H2 = H∗1 + i[W1, P1]M

(
1 − k2

2
σ3 − kσ1

)
.

4
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As the second example we take k = i�, where � is a nonzero real constant. Then
W2 = −�P1, P2 = �W1 and we obtain the same expressions as (12) provided that k is
replaced with � and kσ1 in the third term of H2 is replaced with −�σ2. For k = 1 the
intertwining functions and the Hamiltonians read

L1 = 2iC1

(
0 0
1 −1

)
, L2 = 2iC1

(
1 0
1 0

)
,

H1 = 2

(
C̄1 ∗ C1 0

0 C1 ∗ C̄1

)
, (13)

H2 =
({C1, C̄1}M [C1, C̄1]M

[C1, C̄1]M {C1, C̄1}M

)
.

In terms of the complex supercharge Q1 = √
2C̄1σ+ we have

H1 = {
Q1,Q

†
1

}
MC, [H1,Q1]MC = 0 = Q1 ∗MC Q1, (14)

where and in (13) {, }M and ({, }MC) denote the anti-Moyal and anti-MC brackets. Evidently
H1 is supersymmetric and remains so for the two cases considered above by taking constant
multiple of Q1. As a result, this family is characterized by two arbitrary real-valued functions
W 1 and P1 as well as by a nonzero complex constant.

2.3. Spin–orbit interactions on a phase space and AC-type systems

The AC effect [11] is known as the electromagnetic dual of the well-known Aharonov–Bohm
effect [12, 13]. The former describes the behavior of neutral particles with magnetic moment
μ = μσ aligned perpendicular to their plane of motion (here taken as the q1q2-plane) under
the influence of a static electric field E = (E1, E2) of an impenetrable line-charge also aligned
perpendicular to the plane [14]. Although it can be described relativistically, the AC effect
is mostly discussed in the nonrelativistic limit. In this case, for the motion in the charge-free
(∇ · E = 0) region, the AC Hamiltonian operator Ĥ AC can be written in the following three
equivalent ways:

2MĤ AC = Q̂Q̂†,

= (p̂ − E × μ)2 − μ2E21,

= (p̂2 + μ2E2)1 + μ
[
ih̄(∇ × E)3 + 2(E × p̂)3]σ3. (15)

All these expressions hold in the usual Schrödinger formulation, p̂ = −ih̄∇ is the usual
momentum operator and Q̂ = σ · (p̂− iμE). We should refer to [12] for the second expression
of (15) and note that the terms in the square bracket of the third line are Hermitian only if
taken together. For central static fields we have

∇ × E = 0, E = −1

r

dV

dr
r,

where r = (q1, q2) and r = (
q2

1 + q2
2

)1/2
. We then obtain, from the third line of (15),

Ĥ AC = 1

2M
(p̂2 + μ2E2)1 − μ

Mr

dV

dr
(r × p̂)3σ3,

with the usual form of the spin–orbit (SO) interaction in the last term.
We will now show that various forms of SO-couplings, and hence, many AC types of

isospectral pairs can be realized on the phase space. For this purpose, in terms of two arbitrary
functions f and g of r and J3 = q1p2 − q2p1 we consider

5
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W1 = g(r)r · p = g(r) ∗ (r · p) − ih̄

2
rg′(r), (16)

P1 = f (r)J3 = f (r) ∗ J3. (17)

Here g′(r) denotes the derivative of g with respect to its argument which, when there is no
risk of confusion, will be suppressed. J3 is the component of the angular momentum vector
generating rotations in the q1q2-plane. Since f, g, r ·p and W 1 are scalar under such rotations,
they Moyal commute with J3. But

[r · p, f (r)]M = −ih̄rf ′(r) (18)

implies

[W1, P1]M = −ih̄rg(r)f ′(r)J3. (19)

It is also straightforward to verify that

(r · p) ∗ (r · p) = (r · p)2 +
h̄2

2
,

J3 ∗ J3 = J 2
3 − h̄2

2
, (20)

P1 ∗ P1 = f 2

(
J 2

3 − h̄2

2

)
.

On the other hand, the computation of the ∗-square of W 1 is not so easy. By virtue of (16) and
(18) we first compute

W1 ∗ W1 = g2 ∗ (r · p) ∗ (r · p) − 2ih̄(rgg′) ∗ (r · p) − h̄2

2
r

(
gg′ + rgg′′ +

r

2
g′2

)
. (21)

By longer computations which require going up to the h̄2 terms in the expansion of the
∗-product, we obtain

g2 ∗ (r · p)2 = g2(r · p)2 + 2ih̄rgg′(r · p) − h̄2

4
r2(g2)′′,

(rgg′) ∗ (r · p) = rgg′(r · p) +
ih̄

2
r(gg′ + rgg′′ + rg′2).

On substituting these relations into (21), in view of the first relation of (20), we arrive at

W1 ∗ W1 = g2(r · p)2 + g2 h̄2

2
+

h̄2

2
rg′

(
g +

r

2
g′

)
. (22)

Adding (22) and the third relation of (20) together yields from (12)

H∗ = 1 + k2

2

[
(grp)2 +

h̄2

2
rg′

(
g +

1

2
rg′

)]
, (23)

where we have taken f 2 = g2 and made use of

J 2
3 + (r · p)2 = r2p2. (24)

If in (19) and (23) we take g = a/r, f = εa/r , where ε = ±1 and

M−1 = a2(1 + k2), (25)

6
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we obtain from the last two relations of (12) and from (23)

H∗ = 1

2M

(
p2 − h̄2

4r2

)
,

H1F = −ε
h̄

2Mr2
J3σ3, (26)

H2F = −ε
h̄

2Mr2
J3

(
1 − k2

1 + k2
σ3 − 2k

1 + k2
σ1

)
.

By comparing with (15) and with the usual form of the SO-interaction we see that H1 is of the
AC type with the electric field of a uniform line-charge

E = −ε
h̄

2μr2
r,

and with the induced electric dipole energy −h̄2/(4r2), where the minus sign implies that the
induced electric dipole moment is in the same direction as E. Note also that there are infinitely
many super-partners H2’s whose fermionic parts are indexed by k or by the angle ϑ ∈ (0, 2π)

such that

cos ϑ = 1 − k2

1 + k2
, sin ϑ = 2k

1 + k2
.

Finally in this section we should note that a larger family can be generated by taking

g = a

r
, f = gκ(r),

and by rewriting (22), by virtue of (24), as

W1 ∗ W1 = a2

[
p2 − 1

r2

(
J 2

3 − h̄2

4

)]
.

These lead us to

H∗ = 1

2M

[
p2 +

h̄2

4r2
(1 − 2κ2) − J 2

3

r2
(1 − κ2)

]
,

with H1F and H2F given as in (26) provided that the factor −ε/r2 is replaced with (κ/r)′.
This new family contains an arbitrary function κ(r) which reduces to (26) for κ = ε. In all
these cases J3 is a constant of motion.

3. Third family of Hamiltonians

By adopting the cartesian coordinates for qj’s we now consider

P1 = px√
M

, P2 = py√
M

, Wj = Wj(x, y), j = 1, 2,

for which the first condition of (5) is identically satisfied and the second one yields

∂yW1 = ∂xW2. (27)

Then we have H∗ = (1/2M)p2 + V with 2V = W 2
1 + W 2

2 and

B± = i
h̄√
M

(∂xW1 ± ∂yW2),

H1 = H∗1 − h̄

2
√

M
(∂xW1 + ∂yW2)σ3,

H2 = H∗1 − h̄

2
√

M
(∂xW1 − ∂yW2)σ3 +

h̄√
M

(∂xW2)σ1.

(28)

7
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In terms of g = x2 − 4ax + b and f = ay + c, where a, b and c are some real constants,
the choices

W1 = 1
4 (y2 − g), W2 = 1

2xy + f,

satisfy (27) and the fermionic parts of the above Hamiltonians take the forms

H1F = − h̄√
M

aσ3, H2F = h̄

2
√

M
(xσ3 + yσ1). (29)

For b = 0 = c we have

V = 1

2

[
1

16
r4 + a2r2 +

1

2
ax(3y2 − x2)

]
, (30)

which reduces to the potential energy function of a quartic oscillator for a = 0 and H1 becomes
pure bosonic.

3.1. A supermembrane toy model

H2F given by (29) is, for 2
√

M = h̄, the same as the fermionic part of

Ĥ tm = (p2 + x2y2)1 + xσ3 + yσ1, (31)

but the potential energy functions of H2 and Ĥ tm are different. The model described by Ĥ tm

has served as a toy model for a certain class of supersymmetric matrix models and has been
largely discussed within the context of reductions of supersymmetric Yang–Mills theories, of
regulated theories of supermembranes and M-theory [15, 16]. With the supercharge

Q̂tm = p̂xσ3 − p̂yσ1 − xyσ2,

and parity operator P̂ acting on a 2 × 1 column spinor 
(x, y) as

(P̂
)(x, y) = 1√
2
(σ1 + σ3)
(y, x),

the set {Ĥ tm, Q̂tm, P̂ } exhibits the following SUSY algebra structure:

Ĥ tm = Q̂2
tm, P̂ 2 = 1, {Q̂tm, P̂ } = 0,

in the usual Schrödinger formulation of QM. Here the products are the usual operator products
and {, } is the corresponding anti-commutator.

We first note that the supersymmetric structure of this model is preserved if everything
is understood in the phase-space context of this paper. Secondly, by changing the coefficient
function xy of σ2 in the supercharge operator with an arbitrary function g(x, y) such that

Q = pxσ3 − pyσ1 − gσ2,

we obtain a generalization of Ĥ tm in the phase space with V = g2 and with the new fermionic
part

i([py, g]Mσ3 + [px, g]Mσ1) = h̄(∂yg)σ3 + h̄(∂xg)σ1,

which reduces to the fermionic part of (31) for g = xy. For g = r2/4 we can rewrite H2 as

2H2 = Q ∗MC Q, P 2 = 1, {Q,P }MC = 0, (32)

which emphasize its supersymmetric structure. This corresponds taking a = 0 in (29) and
(30) and hence H1 becomes a pure bosonic Hamiltonian with a quartic oscillator potential.
Equations (32) imply that P, which is the phase-space version of the so-called Witten operator
P̂ , commutes in the MC sense with H2.

8
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3.2. Motion in 2D noncentral fields

For W1 = −μD2/
√

M and W2 = μD1/
√

M , condition (27) reads ∇ · D = 0 and from (28)
we get

H1 = H∗1 +
μh̄

2M
(∇ × D)3σ3, (33)

H∗ = 1

2M
(p2 + μ2D2). (34)

If D is identified with a 2D noncentral electric or magnetic field, then H1 describes the motion of
an uncharged and polarized magnetic moment μ in such a field. In this case μ2D2 corresponds
to the energy of an induced moment and the condition ∇ · D = 0 implies that, as in the AC
effect, the motion takes place in the charge-free region for the identification D → E. For
identification with a magnetic field ∇ · D = 0 is one of the Maxwell equations.

The super-partner of H1 is found, from (28), to be

H2 = H∗ +
μh̄

2M
[(∂xD2 + ∂yD1)σ3 + 2∂xD1σ1]. (35)

As anticipated above for

D1 = 1
2xy + ay, D2 = 1

4 (x2 − y2) − ax,

the fermionic part of H2 is the same, up to a constant multiple, as the fermionic part of (31).
This observation makes it possible to consider some variants of a supermembrane toy model
as the super-partners of a genuine physical system such as the motion of an uncharged and
polarized magnetic moment in a 2D noncentral electromagnetic field.

4. Isospectral Hamiltonians by analytic functions

In this section we will prove that to each analytic function of two real variables there
corresponds a pair of isospectral 2 × 2 matrix Hamiltonians. For this fourth family we
choose

W1 = px, P1 = py, W2 = u(x, y), P2 = v(x, y), (36)

for which conditions (5) yield

∂xu = ∂yv, ∂yu = −∂xv. (37)

These are the well-known Cauchy–Riemann conditions for C2 = (u+iv)/
√

2 to be an analytic
function. Evidently, u and v are harmonic functions of cartesian coordinates x, y, that is, they
belong to the kernel of 2D Laplace operator ∇2 : ∇2u = 0 = ∇2v. In this case B± vanish and

H1 = H∗1 = [
1
2p2 + V (x, y)

]
1,

H2 = H∗1 + h̄[(∂yu)σ1 − (∂xu)σ2], (38)

V = 1
2 |C2|2 = 1

4 (u2 + v2).

Note that H1 is pure bosonic and the fermionic part of H2 is of the form

H2F = h̄(σ × ∇u)3 = −h̄σ · ∇v.

Equations (38) explicitly reveal the fact that to each analytic function of two variables
there corresponds an isospectral pair of 2×2 matrix Hamiltonians. This infinite family can be
characterized in the following way: a pure bosonic Hamiltonian whose potential is the square
modulus of an analytic function is supersymmetric partner when two fermionic degrees of

9
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freedom interacting with the bosonic part as in −h̄σ · ∇v are added to it. This represents
a Zeeman-type interaction corresponding to the inhomogeneous magnetic field which is a
gradient (hence curl-free) field lying in the plane of motion. Note that H1 and the bosonic part
of H2 depend only on the square modulus of the chosen analytic function and the fermionic
part of H2 is sensitive to its local phase.

Although many physical examples can be given, we shall present two examples: one is in
terms of cartesian coordinates and the other accepts separation of variables in the plane polar
coordinates (r, θ). For the first example we choose

u = a(x2 − y2) + bxy + cx + ky + �,

v = − 1
2b(x2 − y2) + 2axy − kx + cy + m,

where a, b, c, k, � and m are some real constants. By choosing � = 0 = m and then by
retaining only two of the remaining constants to be different from zero we obtain

V =

⎧⎪⎨
⎪⎩

1
2

(
a2 + b2

4

)
r4,

1
8 [b2r2 + 4k(k + bx)]r2,

1
2 (c2 + k2)r2.

(39)

The first is 2D quartic oscillator, the last one is the usual 2D isotropic oscillator and the second
one is a nonseparable potential. As the second example we take

u = ark+1 sin(k + 1)θ, v = −ark+1 cos(k + 1)θ,

which specify the potential as V = a2r2k+2/2 and

H2 = H1 + h̄a(k + 1)rk[cos(kθ)σ1 − sin(kθ)σ2]. (40)

This family can be extended to include systems describing planar motion under the
influence of electromagnetic fields. Indeed, if W 1 and P1 are replaced by

W1 = 1√
M

(
px − e

c
Ax

)
, P1 = 1√

M

(
py − e

c
Ay

)
,

without changing W 2 and P2 given by (36), conditions (37) remain intact, but B+ and B−
become equal to (ieh̄/Mc)B(q). Here B(q) is the associated inhomogeneous magnetic field
perpendicular to the xy-plane of motion. Hence H1 goes over to a Pauli-type Hamiltonian.

5. A family of Rashba- and Dresselhaus-type Hamiltonians

Useful analogs of a spin-1/2 system with its 2D state space are two-state atom and any two-
state system for which Pauli matrices play a prominent role as well [17]. To uncover new
isospectral systems in such a context, we rewrite H2F as

H2F = i

2
B−σ3 +

√
2(Aσ+ + Āσ−), (41)

A = [W2, C̄1]M, Ā = −[W2, C1]M. (42)

In the families considered so far, the coefficient functions of σ± depended only on qj’s and
hence they were Moyal commuting. Therefore, by requiring non-commutativity of these
functions a completely new family can be generated. A and Ā are the phase-space analogs
of the bosonic raising and lowering operators when their Moyal commutator is a nonzero real
constant. It has already been shown in [7] that when [A, Ā]M = ±1, the last two terms of (41)
represent a resonant (for +) and a non-resonant (for −) Jaynes–Cummings-type models which

10
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are well known in quantum optics [17]. Phase-space characteristics of these two systems, such
as their spectra, eigen-spinors and related Wigner functions, were also computed in [7]. In
fact, by allowing [A, Ā]M to be proportional to the appropriate products of related lowering
and raising functions, physically relevant many models can be generated. Since this family is
elaborated to some extent in the mentioned work, it will not be pursued any further here.

As the fifth family, we shall consider the cases for which A (and hence Ā) is a function
of momenta. Although in this case A and Ā become Moyal commuting, we recover a new
large family which is different from the previous ones. We shall present two special cases for
which the last two terms of (41) become

HR = α[(py + ipx)σ+ + (py − ipx)σ−] = α(σ × p)3, (43)

HD = β[(px + ipy)σ+ + (px − ipy)σ−], (44)

where α, β are real functions of p = (
p2

x +p2
y

)1/2
and we have chosen

√
2A = α(py + ipx) for

(43) and
√

2A = β(px + ipy) for (44). When α, β are constants, these are the well-known 2D
Rashba [18] and Dresselhaus [19] Hamiltonians which have attracted a great deal of interest
in recent research fields such as the semiconductor spintronics and spin Hall effect [20, 21].
They arise from different mechanisms of SO-couplings of electron spin to the electric fields
in semiconductors and they play important role in studying electrical monitoring of spin
and electrical detection of spin dynamics [22, 24]. Another remarkable property of these
Hamiltonians is that they can be interpreted in the context of a Yang–Mills-type non-Abelian
gauge theory. Indeed, in the presence of the usual kinetic energy term we can write, up to a
constant multiple of 1, the total Rashba Hamiltonian as [21, 23]

H̃R = p2

2M
+ HR = 1

2M

[(
px +

1

2
θh̄σ2

)2

+

(
py − 1

2
θh̄σ1

)2
]

.

In this case, θ = 2Mα/h̄ can be regarded as a charge and h̄(−σ2, σ1)/2 as the corresponding
non-Abelian gauge potential such that Pauli matrices account for isospin-like degrees of
freedom. In fact, as is apparent in the second line of (15), such an interpretation was made by
Goldhaber, for the first time, for the AC-Hamiltonian [14].

Since HR and HD are related (for α = β) to each other by the swap (px, py) → (py, px),
from now on we concentrate only on the family related to HR. The analysis given below can
be carried out mutatis mutandis for the Dresselhaus case. Then from (5) and (42) we obtain

[W2,W1]M = iαpx = [P2, P1]M, [W2, P1]M = iαpy = [W1, P2]M. (45)

Evidently, to each particular solution set {Wj, Pj } of these conditions there corresponds an
isospectral pair of systems such that one of them contains HR in its fermionic part. As an
illustrative example, we shall take P1 = px/

√
M and W1 = −py/

√
M , for which conditions

(45) amount to

−∂yW2 = ηpx = ∂xP2, ∂xW2 = ηpy = ∂yP2,

where η = α
√

M/h̄. These can easily be integrated to find their general solutions as

W2 = ηJ3 + f, P2 = ηr · p + g, (46)

where f and g are arbitrary real-valued functions of px, py and (see section 2.3)

J3 = xpy − ypx, r · p = xpx + ypy.

It will be convenient to consider first the case where α is a constant. If we also
require B− = 0, we obtain [W2, P2]M = 0 since W 1 and P1 were chosen to be Moyal

11
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commuting. Hence, this requirement excludes the Zeeman-type interactions from both partner
Hamiltonians. Recalling that [J3, r · p]M = 0, the Moyal commutativity of W 2 and P2 yields

(p × ∇p)3g = −p · ∇pf,

where ∇p is the 2D gradient operator with respect to momentum variables. We now use (24),
the first two relations of (20) and take f = 0 = g to obtain H2R = H1 +HR which is isopectral
with its bosonic part H1 = H∗1, where

H∗ = p2

2M
+

η2

2

[
J 2

3 + (r · p)2
] = 1

2M

[
1 +

(
αM

h̄

)2

r2

]
p2. (47)

Here we made use of (24). In addition to the usual kinetic term, H∗ contains a momentum-
dependent potential energy term. The total Rashba Hamiltonian H̃R is an ideal model which
relies on the fast motion of electron in the strong field of the nuclei (supposed at r = 0) and
does not depend on position coordinates. In fact, H2R = H∗1 + HR may be considered as
a model which takes into account nonzero values of r and accepts H̃R in the limit r → 0.
Noting that J3 is a constant of motion, H∗ can be elaborated from different perspectives. For
instance, one can impose the constraint r · p = 0 which leads, up to a constant, to H̃R . One
can also interpret H∗ as the kinetic term for a position-dependent mass

M

1 + (αM/h̄)2r2
.

When α/h̄ is small such that its square can be neglected, or alternatively, on the 2D phase-space
plane x = 0 = y, we recover again the total Rashba Hamiltonian with its usual terms. When
f and g are constants, H∗ acquires the following additional terms:

η

2
(f J3 + gr · p) +

1

2
(f 2 + g2),

and when the constraint B− = 0 is removed, H1 and H2R gain additional fermionic terms with
different signs.

In the general α = α(p) case, by similar calculations of section 2.3 we obtain for
f = 0 = g :

W2 ∗ W2 = η2

(
J 2

3 − h̄2

2

)
,

P2 ∗ P2 = η2(r · p)2 +
M

2

[
α2 + pα′

(
α +

p

2
α′

)]
, (48)

B± = ±[W2, P2]M = ∓i
M

h̄
pαα′J3.

Hence

H∗ = p2

2M
+

M

2h̄2 (αrp)2 +
M

4
pα′

(
α +

p

2
α′

)
,

H1F = M

2h̄
pαα′J3σ3, H2F = −H1F + HR,

and, as a particular case, for α = h̄ω/p where ω is a constant, we obtain

H∗ = p2

2M
+

1

2
Mω2

(
r2 − h̄2

4p2

)
, H1F = −h̄

2
Mω2 J3σ3

p2
. (49)

H1F indicates a SO-coupling with momentum-dependent coefficient and for big values of
p,H∗ describes a 2D isotropic oscillator. Other particular interesting cases may be to take
α ∝ pm. Finally we note that one can begin as well with alternative choices of P1 and W 1 to
generate different isospectral pairs involving Rashba-type Hamiltonians.
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Table 1. Five families of isospectral matrix Hamiltonians considered in the main text and associated
choices of phase-space functions. In the second and fifth rows the abbreviations η± = (1 ± k2)/2
and α = α(p), J3 = xpy − ypx are used respectively. More general forms and physically relevant
special cases of some of these families are given in the main text. The family presented in our
previous work [7] constitutes the sixth family of this table.

Functions H∗ H1F H2F

1 W1 = 0 = P1

W2 = 1√
M

(
p1 − e

c
A1

)
1

2M

(
p − e

c
A

)2 −γB(q)σ3 γB(q)σ3

P2 = 1√
M

(
p2 − e

c
A2

)
2 W1 = W1(q, p)

P1 = P1(q, p) η+(P1 ∗ P1 + W1 ∗ W1) iη+[W1, P1]Mσ3 i[W1, P1]M(η−σ3 − kσ1)

W2 = kW1, P2 = kP1

3 W1 = W1(x, y)

P1 = px√
M p2

2M
+ 1

2

(
W 2

1 + W 2
2

) −h̄

2
√

M
(∂xW1 + ∂yW2)σ3

−h̄

2
√

M
(∂xW1 − ∂yW2)σ3

+ h̄√
M

∂xW2σ1W2 = W2(x, y)

P2 = py√
M

4 W1 = px, P1 = py

W2 = u(x, y)
p2

2 + 1
4 (u2 + v2) 0 h̄[(∂yu)σ1 − (∂xu)σ2]

P2 = v(x, y)

5 W1 = −py√
M

, P1 = px√
M

W2 = α
√

M

h̄
J3

p2

2M
+ M

2

[(
αrp

h̄

)2

+ 1
2 pα′ (α + 1

2 pα′)] M

2h̄ pαα′J3σ3 −H1F + α(σ × p)3

P2 = α
√

M

h̄
r · p

6. Concluding remarks

Clifford algebras and their deformations with the Moyal ∗-product have been proved to
be profitable in realizing the supersymmetric QM methods on a classical phase space. The
method introduced in [7] and elaborated here to reveal its application power addresses the
isospectral pairs of 2 × 2 matrix Hamiltonians depending on four real-valued phase-space
functions subject to two conditions given by (5). We have shown that it provides a unified
framework for many model Hamiltonians from various branches of physics. Our main results
are exhibited in table 1 where the families of the isospectral pairs are tabulated in the order
they are considered in the main text. However, our investigation is by no means exhaustive.
The resulting structure is quite general to include other families which are mentioned neither
here nor in [7]. Even in the discussed families one may identify some physically more relevant
special isospectral pairs.

Finally we should emphasize some merits of the method which are not considered here but
are quite evident. One of each isospectral pair, namely H1, is diagonal and in majority of cases
its spectrum and eigen-spinors are easily obtainable. The latter can be directly transferred to
H2 by means of Lj’s. We should also note that each Hamiltonian can be expressed as a sum of
two factorized products of Lj’s and their Hermitian conjugates. Another merit of the method
is that it directly provides us with constants of motion. Indeed, from (3) it easily follows that
Rj = Lj ∗MC L

†
j and Sj = L

†
j ∗MC Lj are constants of motion such that R1 and S2 (R2 and S1)

commute, with respect to ∗MC-product, with H1 (with H2). However, these are not independent
since their sum is proportional to the corresponding Hamiltonian. Therefore, as no explicit
time dependence is assumed, each system has, together with the Hamiltonian, two constants
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of motion. Since H1 is diagonal, its constants of motion, S2 and R1, are simply related to its
diagonal elements and they may be important in searching its own SUSY structure. However,
constants of motion for H2 manifest its highly nontrivial symmetry.

Acknowledgments

This work was supported in part by the Scientific and Technological Research Council of
Turkey (TÜBİTAK).

Appendix A. Clifford algebra C4(C) and SUSY

Clifford algebra structure can be defined on any vector space on which a non-degenerate inner
product g is defined. The non-degeneracy of g provides a linear isomorphism between the
vector space and its dual 1-form spaces by x̃(y) = iy(x̃) = g(x, y), where x̃ is 1-form dual to
the vector field x and y is an arbitrary vector field. Here iy stands for the interior derivation (or
interior multiplication) which acts on an arbitrary k-form (a totally anti-symmetric covariant
tensor) β as (iỹβ)(x1, . . . , xk−1) = kβ(y, x1, . . . , xk−1), where x1, . . . , xk−1 are arbitrary
vector fields. The associative Clifford product (∗C) of a 1-form x̃ and a k-form β can be
defined as x̃ ∗C β = x̃ ∧ β + ixβ, where ∧ represents the well-known exterior (or Cartan)
product. Thanks to the associativity of ∗C , this relation suffices to completely determine the
Clifford product of arbitrary forms [7, 10].

Let us return to the cotangent space of our phase space and let us represent the orthonormal
1-form basis of the complex Clifford algebra C4(C) by ej such that

ej ∗C ek + ek ∗C ej = 2δjk.

Here the Kronecker symbols δjk denote the components of the inverse of g. We then define
two Clifford 1-form fields

q− = C̄1f + C̄2g, q+ = C1f̌ + C2ǧ, (A.1)

where C̄2, C̄1 are the complex conjugates of the phase-space functions defined by (5) of the
main text and

f = 1√
2
(e1 + ie3), f̌ = 1√

2
(e1 − ie3),

g = 1√
2
(e2 + ie4), ǧ = 1√

2
(e2 − ie4).

By the deformation of Clifford algebra it is meant that the Moyal star-product must be used
together with ∗C in composing the differential forms. The Moyal–Clifford product ∗MC is
this combined product. One can directly verify that q± are nilpotent (q± ∗C q± = 0) with
respect to the Clifford product. On the other hand they obey q± ∗MC q± = 0, if and only if
[C1, C2]M = 0 is satisfied [7]. This single condition is equivalent to two conditions (5) of the
main text. We then define the supersymmetric Hamiltonian Hs by 2Hs = {q+, q−}MC which
implies the commutativity, with respect to ∗MC-product, of Hs with q±. Therefore, the set
{Hs, q±} closes into the so-called 2-extended (or N = 2) SUSY algebra with the nilpotent
supercharges q±.

By virtue of (A1), Hs can explicitly evaluated to be

Hs = H∗I + 1
2 {[W1, P1]Me1 ∗C e3 + [W2, P2]Me2 ∗C e4

+ [W2, P1]M(e1 ∗C e4 + e2 ∗C e3) + [W1,W2]M(e1 ∗C e2 + e3 ∗C e4)}, (A.2)
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where I stands for the unit element of the algebra. If the representation

e1 =
(

0 iσ1

−iσ1 0

)
, e2 =

(
0 iσ3

−iσ3 0

)
,

e3 =
(

0 iσ2

−iσ2 0

)
, e4 =

(
0 1
1 0

)
,

is used for the complex Clifford basis, then the MC-product goes over to the Moyal product of
matrix-valued functions. By using the above representation in (A2), we end up with the block
diagonal form Hs = diag(H1,H2), where Hj’s are given in the introduction of the main text.
In this representation, the supercharges q± are

q+ = 1√
2

(
0 L1

−L2 0

)
= q

†
−.

Nilpotency of q± imply that Lj’s are divisors of zero (L1 ∗MC L2 = 0 = L2 ∗MC L1) and
the ∗MC commutativity of Hs and q± is equivalent to relations (3) of the main text. Finally,
as ω1 = q+ + q− and ω2 = −i(q+ − q−) anti-commute with respect to the ∗MC-product and
become Hermitian in the above representation, we can write

4Hsδjk = {ωj , ωk}MC, [Hs, ωj ]MC = 0.

These constitute a realization of the above SUSY algebra in terms of Hermitian supercharges
ωj .
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